APPENDIX G

SYSTEM CHARACTERISTICS

INTRODUCTION

This appendix contains a conpendium of system characteristics of radars in the $2.7\ \text{to}\ 2.9\ \text{GHz}$ band.

ASR-5 SYSTEM CHARACTERISTICS*

ANTENNA CHARACTERISTICS

A. Type:

Shaped beam, cosecant squared in elevation

from half power point to +30 degrees

B. Gain:

34 dB

C. Beamwidth:

elevation: 5 degrees azimuth: 1.5 degrees

D. Polarization:

Linear, vertical, or circular;

remotely selectable

E. Antenna Rotation Rate:

13 or 15 RPM

TRANSMITTER CHARACTERISTICS

A. Output Tube:

Magnetron (5586, DX276 or QK1643)

B. Frequency:

Tunable 2.7 to 2.9 GHz

C. Peak Power:

400 - 500 kW

D. Pulsewidth:

.833 microsecond

E. PRF:

Selectable 900 to 1200 PPS (2-pulse

stagger on or off)

RECEIVER CHARACTERISTICS

A. System Noise Figure: 4 dB maximum

B. Receiver Bandwidth:

Normal IF:

2.7 MHz

MTI IF:

5.0 MHz

Normal Video: 2.0 MHz

MTI Video:

2.0 MHz

C. Minimum Discernible Signal (MDS):

> Normal Receiver: -109 dBm MTI Receiver: -107 dBm

D. Scope Range (NM):

^{*}Also applicable to ASR-4, ASR-6, and AN/FPN-47

ASR-7 SYSTEM CHARACTERISTICS*

ANTENNA CHARACTERISTICS

A. Type:

Shaped beam, cosecant squared in elevation from upper half power point to +30 degrees

B. Gain:

34 dB

C. Beamwidth:

elevation:

5 degrees azimuth: 1.5 degrees

D. Polarization:

Linear, vertical, or circular; remotely

selectable

E. Antenna Rotation Rate:

15 RPM

TRANSMITTER CHARACTERISTICS

A. Output Tube:

Magnetron (DX276, 8798)

B. Frequency:

2.7 to 2.9 GHz

C. Peak Power:

425 kW

D. Pulsewidth:

0.833 microsecond

E. PRF:

6-pulse stagger with 1002 PPS average,

or fixed (selectable from 713 - 1200

PPS)

RECEIVER CHARACTERISTICS

A. System Noise Figure: 4.75 dB

B. Receiver Bandwidth:

Normal IF:

2.7 MHz

MTI IF:

5.0 MHz

C. Minimum Discernible Signal (MDS):

Normal Receiver:

-108 dBm

Log Receiver:

-106 dBm

MTI Receiver:

-106 dBm

Log MTI Receiver:

-104 dBm

D. Scope Range (NM):

^{*}Also applicable to AN/GPN-12

ASR-8 SYSTEM CHARACTERISTICS

ANTENNA CHARACTERISTICS

A. Type:

Shaped Beam, cosecant squared in

elevation from half power point to +30

degrees

B. Gain:

33.5 dB Normal Beam

32.5 dB Passive Beam

C. Beamwidth:

elevation:

4.8 degrees

azimuth: 1.35 degrees

D. Polarization:

Linear verticle or circular, remotely

selectable

E. Antenna Rotation Rate:

12.5 RPM

TRANSMITTER CHARACTERISTICS

A. Output Tube:

Klystron (VA-87E)

B. Frequency:

Tunable 2.7 to 2.9 Hz

C. Peak Power:

1.4 MW

D. Pulsewidth:

0.6 microsecond

E. PRF:

4-pulse stagger with 1040 average, or fixed (selectable from 700 - 1200 PPS)

RECEIVER CHARACTERISTICS

A. System Noise Figure:

4.0 dB maximum

B. Receiver Bandwidth:

Normal IF:

1.2 MHz

MTI IF:

5.0 MHz

Log IF:

1.2 MHz

MTI Video:

585 kHz

C. Minimum Discernible Signal (MDS):

Normal Receiver: -110 dBm

Log Receiver:

-109 dBm

MTI Receiver:

-108 dBm

D. Scope Range (NM):

WSR-57 SYSTEM CHARACTERISTICS

ANTENNA CHARACTERISTICS

A. Type:

Parabolic disk (12 ft. diameter)

B. Gain:

38 dB

C. Beamwidth:

2.2 degrees

D. Polarization:

Linear, horizontal

E. Antenna Rotation Rate:

0 to 5' RPM

-5 to +45 degrees elevation

TRANSMITTER CHARACTERISTICS

A. Output Tube:

Magnetron (QK729-733)

B. Frequency:

Tunable 2.7 to 2.9 GHz

C. Peak Power:

500 kW

D. Pulsewidth:

0.5 microsecond (short pulse)
4.0 microseconds (long pulse)

E. PRF:

658 PPS (short pulse) 164 PPS (long pulse)

RECEIVER CHARACTERISTICS

A. System Noise Figure:

4.0 dB

B. Receiver IF Bandwidth:

4.5 MHz for short pulse and 0.75

MHz for long pulse

C. Minimum Discernible Signal (MDS):

> -100 dBm (short pulse) -108 dBm (long pulse)

D. Scope Range (NM):

WSR-74S SYSTEM CHARACTERISTICS

ANTENNA CHARACTERISTICS

A. Type: Parabolic Disk (12 ft. diameter)

B. Gain: 38 dB

C. Beamwidth: 2.2 degrees maximum

D. Polarization: Linear, horizontal

E. Antenna Rotation Rate: 0 to 5 RPM

-5 to +45 degrees elevation

TRANSMITTER CHARACTERISTICS

A. Output Tube: Coaxial Magnetron

B. Frequency: 2.7 to 2.9 GHz

C. Peak Power: 565 kW

D. Pulsewidth: 1 microsecond (short pulse)

4 microseconds (long pulse)

E. PRF: 545 PPS on short pulse

164 PPS on long pulse

RECEIVER CHARACTERISTICS

A. System Noise Figure:

B. Receiver IF Bandwidth: Not less than 1.5 MHz for short pulse

and .375 MHz for long pulse

C. Minimum Discernible Signal

(MDS):

D. Scope Range (NM): 50, 125, and 250 nautical miles

AN/FPS-6 SYSTEM PARAMETERS*

ANTENNA CHARACTERISTICS

A. Type:

Shaped beam, fan beam in azimuth

B. Gain:

39 dB

C. Beamwidth:

vertical: 0.85 degree horizontal: 3.2 degrees

D. Polarization:

E. Antenna Rotation Rate:

7.5 RPM, 20-30 CPM

TRANSMITTER CHARACTERISTICS

A. Output Tube:

Magnetron (QK327A) or Coaxial Magnetron

(VSM-1143)

B. Frequency:

Tunable 2.7 to 2.9 GHHz

C. Peak Power:

5.0 MW

D. Pulsewidth:

2.0 microseconds

E. PRF:

250 to 400 PPS

RECEIVER CHARACTERISTICS

A. System Noise Figure:

8.0 dB

B. Receiver Bandwidth:

800 kHz

C. Minimum Discernible Signal (MDS):

Normal: -106 dBm

D. Scope Range (NM):

^{*}Also applicable to AN/FPS-90

AN/GPN-20 SYSTEM CHARACTERISTICS

ANTENNA CHARACTERISTICS

A. Type:

Shaped beam, cosecant squared in elevation

from half power point to +30 degrees

B. Gain:

33.5 dB Normal beam

32.5 dB Passive beam

C. Beamwidth:

elevation: 4.8 degrees

azimuth: 1.35 degrees

D. Polarization:

Vertical or circular (LH)

E. Antenna Rotation Rate:

12 or 15 RPM

TRANSMITTER CHARACTERISTICS

A. Output Tube:

Magnetron (8798), diplex filtered

B. Frequency:

Tunable 2.7 to 2.9 GHz

C. Peak Power:

500 kW

D. Pulsewidth:

0.833 microsecond

E. PRF:

Staggered with 1040 average (selectable

from 849 - 1204 PPS)

RECEIVER CHARACTERISTICS

A. System Noise Figure:

4 dB

B. Receiver Bandwidth:

Normal IF:

1.2 MHz

MTI IF:

5.0 MHz

Log IF:

1.2 MHz

MTI Video: 585 kHz

C. Minimum Discernible Signal (MDS):

Normal Receiver: -110 dBm

Log Receiver: -109 dBm

MTI Receiver:

-108 dBm

D. Scope Range (NM):

AN/CPN-4 SYSTEM CHARACTERISTICS

ANTENNA CHARACTERISTICS

A. Type:

Shaped beam, cosecant squared in elevation from half power point to +30 degrees

B. Gain:

31 dB

C. Beamwidth:

azimuth:

elevation: 3.6 degrees 2.2 degrees

D. Polarization:

Horizontal or circular, remotely selectable

20 + 2 RPM E. Antenna Rotation Rate:

TRANSMITTER CHARACTERISTICS

A. Output Tube:

B. Frequency:

C. Peak Power:

D. Pulsewidth:

E. PRF:

Magnetron (5586)

Tunable 2780 to 2820 MHz

600 kW

0.5 microsecond

1500 PPS

4.0 dB

RECEIVER CHARACTERISTICS

A. System Noise Figure:

B. Receiver Bandwidth:

Normal IF: 2.25 MHz MTI IF: 4.5 MHz

C. Minimum Discernible Signal (MDS):

> Normal: -106 dBm MTI: -104 dBm

D. Scope Range (NM):

AN/MPN-13 SYSTEM CHARACTERISTICS*

ANTENNA CHARACTERISTICS

A. Type:

Shaped beam, cosecant squared in elevation

from half power point to +30 degrees

B. Gain:

32 dB

C. Beamwidth:

elevation: 3.6 degrees

azimuth: 2.2 degrees

D. Polarization:

Horizontal or circular, remotely selectable

E. Antenna Rotation Rate:

15 RPM

TRANSMITTER CHARACTERISTICS

A. Output Tube:

Magnatron (8798)

B. Frequency:

Tunable 2780 to 2820 MHz

C. Peak Power:

750 kW

D. Pulsewidth:

0.7 microsecond

E. PRF:

1100 PPS (3-pulse stagger on or off)

RECEIVER CHARACTERISTICS

A. System Noise Figure:

4.0 dB

B. Receiver Bandwidth:

Normal: 2.25 MHz

MTI:

4.5 MHz

C. Minimum Discernible Signal (MDS):

Normal:

-106 dBm

MTI:

 $-104 \, dB$,

D. Scope Range (NM):

^{*}Also applicable to AN/MPN-14 and AN/MPN-15

AN-TPN-24 SYSTEM CHARACTERISTICS

ANTENNA CHARACTERISTICS

A. Type:

Shaped beam, cosecant squared in elevation

from half power point to +30 degrees

B. Gain:

33.6 dB

C. Beamwidth:

elevation: 6 degrees azimuth: 1.55 degrees

D. Polarization:

Vertical or circular

E. Antenna Rotation Rate:

15 RPM

TRANSMITTER CHARACTERISTICS

A. Output Tube:

Magnetron (8798), diplex filtered

B. Frequency:

Tunable 2.7 to 2.9 GHz

C. Peak Power:

450 kW

D. Pulsewidth:

1.0 microseconds

E. PRF:

12 staggered (1050 Hz average)

RECEIVER CHARACTERISTICS

A. System Noise Figure:

2.5 dB

B. Receiver Bandwidth:

Normal: 1.0 MHz

C. Minimum Discernible Signal (MDS):

Normal: -112 dBm for

6 dB S/N

D. Scope Range (NM):

APPENDIX H

REFERENCES

Atlantic Research Corporation (December, 1974), "Degradation to Search Radar PPI Performance in an Electromagnetic Environment."

Davenport, Wilbur B. Jr. and William L. Root (1958), Random Signals and Noise, McGraw-Hill Book Co.

Dillard, George M., and Charles E. Antoniak (September, 1970), "A Practical Distribution-Free Detection Procedure for Multiple Range-Bin Radars", <u>IEEE Transactions on Aerospace and Electronic Systems</u>, Volume AES-6, No. 5.

Feller, William (1968), An Introduction to Probability Theory and its Applications, Volume I, Third Edition, John Wiley and Sons, Inc.

Fleck, R. (March, 1967), "Procedures for Computing Separation Criteria and Off-Frequency Rejection in Electromagnetic Compatibility Problems", ECAC, ESD-TR-67-5.

Gannaway, R. (October, 1965), "Signal-to-Noise Ratio in Receivers Using Linear or Square-Low Envelope Detectors", <u>Proceeding of the IEEE</u>, pp. 1645 - 1646.

Hinkle, R. and R. Mayher (April, 1975), "Spectrum Resource Assessment in the 2.7-2.9 GHz Band, Phase I - Background and Study Definition," Report No. 1/73 - P1.

Hinkle, R.; R. Pratt; and R. Matheson (August, 1976), "Spectrum Resource Assessment in the 2.7 to 2.9 GHz Band, Phase II: Measurement and Model Validation (Report No. 1)," OT Report 76-97.

Letter Report (June 11, 1976), Video Enhancer Modification, FAA-NA-76-39.

Maiuzzo, Michael A. (July, 1972), "Analysis of Factors Affecting Electromagnetic Compatibility of Radars Operating in the 2700 to 2900 MHz Band", FAA Report No. FAA-RD-71-91.

Meyer, Daniel P. and Herbert A. Mayer (1973), Radar Target Detection, Academic Press.

Meyers, R. (August, 1971), "A Receiver Waveform Simulation (RWS) Model", ECAC, ESD-TR-71-099.

Nathanson, F. E. and P. J. Luke (January, 1972), "Loss from Approximations to Square-Law Detectors in Quadrature Systems with Postdetection Integration", IEEE Transactions on Aerospace and Electronic Systems.

- Nathanson, Fred E. (1969), Radar Design Principles, McGraw-Hill Book Co.
- Natrella, Mary Gibson (1963), <u>Experimental Statistics</u>, Handbook 91, U.S. Department of Commerce, National Bureau of Standards.
- Newhouse, Paul D. (May, 1969), "Peak Output Power in Victim Receivers", ECAC Radar Analysis Bulletin No. 2.
- Ng, Harold J. (October, 1977), "Table of Error Probability and Error Function", Office of Telecommunications, U.S. Department of Commerce, TN-77-5.
- Paupolis, A. (1965), <u>Probability</u>, <u>Random Variables</u>, and <u>Stochastic</u> <u>Processes</u>, <u>McGraw-Hill Book Co</u>.
- Rice, S. O. (1954), "Mathematical Analysis of Random Noise", in Selected Papers on Noise and Stochastic Processes, N. Wax, Ed. New York.
- Saaty, Thomas L. (1961), Elements of Queueing Theory, McGraw-Hill Book Co.
- Seely, Samuel (1958), Electron-Tube Circuitry, McGraw Hill Book Co.
- Skolnik, M. I. (1962), Introduction to Radar System, McGraw-Hill Co.
- Skolnik, M. I. (1970), Radar Handbook, McGraw-Hill Book Co.
- Summary Minutes First OTP Meeting on 2700-2900 MHz Spectrum Resource and Allocation Provision, 27 October 1972.
- Summary Minutes Second OTP Meeting on 2700-2900 MHz Spectrum Resource and Allocation Provision, 13 December 1972.
- Trunk, G. V. (July, 1970), "Detection Results for Scanning Radars Employing Feedback Integration", IEEE Transactions on Aerospace and Electronic Systems, Volume AES-6 No. 4.
- Trunk, G. V. (July, 1972), "Comparison of the Collapsing Losses in Linear and Square-Law Detectors", Proc. IEEE, Volume 60, No. 6, pp. 743-744.
- Trunk, G. V. (April, 1977) "MTI Noise Integration Loss" NRL Report 8132.
- Offi, Domenick J. (December, 1969), "Test and Evaluate Dual Diversity for Airport Surveillance Radars (ASR)", Report No. NA-69-50 (RD-69-56).
- White, D.R.J., (1972), "Electromagnetic Interference Handbook," Vol. 5.